Repository logo
 

Automated 3D MRI rendering of the craniofacial skeleton: using ZTE to drive the segmentation of black bone and FIESTA-C images

Published version
Peer-reviewed

Change log

Abstract

Abstract: Purpose: Automated bone segmentation from MRI datasets would have a profound impact on clinical utility, particularly in the craniofacial skeleton where complex anatomy is coupled with radiosensitive organs. Techniques such as gradient echo black bone (GRE-BB) and short echo time (UTE, ZTE) have shown potential in this quest. The objectives of this study were to ascertain (1) whether the high-contrast of zero echo time (ZTE) could drive segmentation of high-resolution GRE-BB data to enhance 3D-output and (2) if these techniques could be extrapolated to ZTE driven segmentation of a routinely used non bone-specific sequence (FIESTA-C). Methods: Eleven adult volunteers underwent 3T MRI examination with sequential acquisition of ZTE, GRE-BB and FIESTA-C imaging. Craniofacial bone segmentation was performed using a fully automated segmentation algorithm. Segmentation was completed individually for GRE-BB and a modified version of the algorithm was subsequently implemented, wherein the bone mask yielded by ZTE segmentation was used to initialise segmentation of GRE-BB. The techniques were subsequently applied to FIESTA-C datasets. The resulting 3D reconstructions were evaluated for areas of unexpected bony defects and discrepancies. Results: The automated segmentation algorithm yielded acceptable 3D outputs for all GRE-BB datasets. These were enhanced with the modified algorithm using ZTE as a driver, with improvements in areas of air/bone interface and dense muscular attachments. Comparable results were obtained with ZTE+FIESTA-C. Conclusion: Automated 3D segmentation of the craniofacial skeleton is enhanced through the incorporation of a modified segmentation algorithm utilising ZTE. These techniques are transferrable to FIESTA-C imaging which offers reduced acquisition time and therefore improved clinical utility.

Description

Journal Title

Neuroradiology

Conference Name

Journal ISSN

0028-3940
1432-1920

Volume Title

63

Publisher

Springer Berlin Heidelberg

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)
Sponsorship
Academy of Medical Sciences (SGL019\1012)
Newlife – The Charity for Disabled Children (SG/17-18/03)