Repository logo
 

HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Lv, Kaosheng 
Gong, Chujie 
Antony, Charles 
Han, Xu 
Ren, Jian-Gang 

Abstract

Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.

Description

Keywords

HSC regeneration, HectD1, Polypeptide exit tunnel, ZNF622, hematopoietic stem cells, protein synthesis, ribosome assembly, ribosome biogenesis, signaling, ubiquitin, Hematopoietic Stem Cells, Protein Biosynthesis, Ribosomes

Journal Title

Cell Stem Cell

Conference Name

Journal ISSN

1934-5909
1875-9777

Volume Title

28

Publisher

Elsevier BV
Sponsorship
Kay Kendall Leukaemia Fund (KKL1246)
MRC (MR/T012412/1)
Wellcome Trust (203151/Z/16/Z)
Wellcome Trust (100140/Z/12/Z)
Medical Research Council (MC_PC_17230)