Inkjet Printed Circuits with 2D Semiconductor Inks for High-Performance Electronics
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
AbstractAir‐stable semiconducting inks suitable for complementary logic are key to create low‐power printed integrated circuits (ICs). High‐performance printable electronic inks with 2D materials have the potential to enable the next generation of high performance low‐cost printed digital electronics. Here, the authors demonstrate air‐stable, low voltage (<5 V) operation of inkjet‐printed n‐type molybdenum disulfide (MoS2), and p‐type indacenodithiophene‐co‐benzothiadiazole (IDT‐BT) field‐effect transistors (FETs), estimating an average switching time of τMoS2 ≈ 4.1 μs for the MoS2 FETs. They achieve this by engineering high‐quality MoS2 and air‐stable IDT‐BT inks suitable for inkjet‐printing complementary pairs of n‐type MoS2 and p‐type IDT‐BT FETs. They then integrate MoS2 and IDT‐BT FETs to realize inkjet‐printed complementary logic inverters with a voltage gain |Av| ≈ 4 when in resistive load configuration and |Av| ≈ 1.4 in complementary configuration. These results represent a key enabling step towards ubiquitous long‐term stable, low‐cost printed digital ICs.
Description
Funder: Imperial College London; Id: http://dx.doi.org/10.13039/501100000761
Journal Title
Conference Name
Journal ISSN
2199-160X
Volume Title
Publisher
Publisher DOI
Rights and licensing
Sponsorship
Engineering and Physical Sciences Research Council (EP/P02534X/1)