Repository logo
 

Defective folate metabolism causes germline epigenetic instability and distinguishes Hira as a phenotype inheritance biomarker

Published version
Peer-reviewed

Change log

Authors

Blake, Georgina E. T. 
Yung, Hong wa 
Ferguson-Smith, Anne C. 

Abstract

Abstract: The mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results in transgenerational epigenetic inheritance of congenital malformations. Either maternal grandparent can initiate this phenomenon, which persists for at least four wildtype generations. Here, we use genome-wide approaches to reveal genetic stability in the Mtrr model and genome-wide differential DNA methylation in the germline of Mtrr mutant maternal grandfathers. We observe that, while epigenetic reprogramming occurs, wildtype grandprogeny and great grandprogeny exhibit transcriptional changes that correlate with germline methylation defects. One region encompasses the Hira gene, which is misexpressed in embryos for at least three wildtype generations in a manner that distinguishes Hira transcript expression as a biomarker of maternal phenotypic inheritance.

Description

Funder: Center for Trophoblast Research

Keywords

Article, /631/136/2442, /631/208/176, /631/443/319, /45/23, /45/88, /45/90, /38/22, /64/60, /82/80, /82/58, article

Journal Title

Nature Communications

Conference Name

Journal ISSN

2041-1723

Volume Title

12

Publisher

Nature Publishing Group UK
Sponsorship
RCUK | Medical Research Council (MRC) (MR/J001597)