Repository logo
 

Life cycle assessment of recycling strategies for perovskite photovoltaic modules

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Effective recycling of spent perovskite solar modules will further reduce the energy requirements and environmental consequences of their production and deployment, thus facilitating their sustainable development. Here, through ‘cradle-to-grave’ life cycle assessments of a variety of perovskite solar cell architectures, we report that substrates with conducting oxides and energy-intensive heating processes are the largest contributors to primary energy consumption, global warming potential and other types of impact. We therefore focus on these materials and processes when expanding to ‘cradle-to-cradle’ analyses with recycling as the end-of-life scenario. Our results reveal that recycling strategies can lead to a decrease of up to 72.6% in energy payback time and a reduction of 71.2% in greenhouse gas emission factor. The best recycled module architecture can exhibit an extremely small energy payback time of 0.09 years and a greenhouse gas emission factor as low as 13.4 g CO2 equivalent per kWh; it therefore outcompetes all other rivals, including the market-leading silicon at 1.3–2.4 years and 22.1–38.1 g CO2 equivalent per kWh. Finally, we use sensitivity analyses to highlight the importance of prolonging device lifetime and to quantify the effects of uncertainty induced by the still immature manufacturing processes, changing operating conditions and individual differences for each module.

Description

Journal Title

Nature Sustainability

Conference Name

Journal ISSN

2398-9629
2398-9629

Volume Title

4

Publisher

Springer Nature

Rights and licensing

Except where otherwised noted, this item's license is described as All rights reserved
Sponsorship
Royal Society (UF150033)
European Research Council (756962)
This work is supported in part by National Science Foundation (NSF) CAREER Award (CBET-1643244). S.D.S. acknowledges support from the Royal Society and Tata Group (UF150033).