Repository logo
 

Nanooptomechanical Transduction in a Single Crystal with 100% Photoconversion.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Velazquez-Garcia, Jose de J 

Abstract

Materials that exhibit nanooptomechanical transduction in their single-crystal form have prospective use in light-driven molecular machinery, nanotechnology, and quantum computing. Linkage photoisomerization is typically the source of such transduction in coordination complexes, although the isomers tend to undergo only partial photoconversion. We present a nanooptomechanical transducer, trans-[Ru(SO2)(NH3)4(3-bromopyridine)]tosylate2, whose S-bound η1-SO2 isomer fully converts into an O-bound η1-OSO photoisomer that is metastable while kept at 100 K. Its 100% photoconversion is confirmed structurally via photocrystallography, while single-crystal optical absorption and Raman spectroscopies reveal its metal-to-ligand charge-transfer and temperature-dependent characteristics. This perfect optical switching affords the material good prospects for nanooptomechanical transduction with single-photon control.

Description

Keywords

Journal Title

Conference Name

Journal ISSN

1932-7447

Volume Title

Publisher