Repository logo
 

On the "Matsubara heating" of overtone intensities and Fermi splittings.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Classical molecular dynamics (MD) and imaginary-time path-integral dynamics methods underestimate the infrared absorption intensities of overtone and combination bands by typically an order of magnitude. Plé et al. [J. Chem. Phys. 155, 2863 (2021)] have shown that this is because such methods fail to describe the coupling of the centroid to the Matsubara dynamics of the fluctuation modes; classical first-order perturbation theory (PT) applied to the Matsubara dynamics is sufficient to recover most of the lost intensity in simple models and gives identical results to quantum (Rayleigh-Schrödinger) PT. Here, we show numerically that the results of this analysis can be used as post-processing correction factors, which can be applied to realistic (classical MD or path-integral dynamics) simulations of infrared spectra. We find that the correction factors recover most of the lost intensity in the overtone and combination bands of gas-phase water and ammonia and much of it for liquid water. We then re-derive and confirm the earlier PT analysis by applying canonical PT to Matsubara dynamics, which has the advantage of avoiding secular terms and gives a simple picture of the perturbed Matsubara dynamics in terms of action-angle variables. Collectively, these variables "Matsubara heat" the amplitudes of the overtone and combination vibrations of the centroid to what they would be in a classical system with the oscillators (of frequency Ωi) held at their quantum effective temperatures [of ℏΩi coth(βℏΩi/2)/2kB]. Numerical calculations show that a similar neglect of "Matsubara heating" causes path-integral methods to underestimate Fermi resonance splittings.

Description

Journal Title

J Chem Phys

Conference Name

Journal ISSN

0021-9606
1089-7690

Volume Title

155

Publisher

AIP Publishing

Rights and licensing

Except where otherwised noted, this item's license is described as All rights reserved
Sponsorship
EPSRC (1942965)

Relationships

Is supplemented by: