Capability-based access control for cyber physical systems
View / Open Files
Authors
Advisors
Beresford, Alastair
Date
2021-07-03Awarding Institution
University of Cambridge
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Dodson, M. (2021). Capability-based access control for cyber physical systems (Doctoral thesis). https://doi.org/10.17863/CAM.77125
Abstract
Cyber Physical Systems (CPS)
couple digital systems with the physical environment, creating
technical, usability, and economic security challenges beyond those of
information systems. Their distributed and
hierarchical nature, real-time and safety-critical requirements, and limited
resources create new vulnerability classes and severely constrain the security
solution space. This dissertation explores these challenges, focusing on
Industrial Control Systems (ICS), but demonstrating broader applicability to
the whole domain.
We begin by systematising the usability and economic challenges to secure ICS.
We fingerprint and track more than 10\,000 Internet-connected devices over four years and show
the population is growing, continuously-connected, and unpatched. We then
explore adversarial interest in this vulnerable population. We track 150\,000
botnet hosts, sift 70 million underground forum posts, and perform the
largest ICS honeypot study to date to demonstrate that the cybercrime community
has little competence or interest in the domain. We show that the current
heterogeneity, cost, and level of expertise required for large-scale attacks on
ICS are economic deterrents when targets in the IoT domain are
available.
The ICS landscape is changing, however, and we demonstrate the imminent
convergence with the IoT domain as inexpensive hardware, commodity operating
Cyber Physical Systems (CPS) couple digital systems with the physical environment, creating technical, usability, and economic security challenges beyond those of information systems. Their distributed and hierarchical nature, real-time and safety-critical requirements, and limited resources create new vulnerability classes and severely constrain the security solution space. This dissertation explores these challenges, focusing on Industrial Control Systems (ICS), but demonstrating broader applicability to the whole domain.
We begin by systematising the usability and economic challenges to secure ICS. We fingerprint and track more than 10,000 Internet-connected devices over four years and show the population is growing, continuously-connected, and unpatched. We then explore adversarial interest in this vulnerable population. We track 150,000 botnet hosts, sift 70 million underground forum posts, and perform the largest ICS honeypot study to date to demonstrate that the cybercrime community has little competence or interest in the domain. We show that the current heterogeneity, cost, and level of expertise required for large-scale attacks on ICS are economic deterrents when targets in the IoT domain are available.
The ICS landscape is changing, however, and we demonstrate the imminent convergence with the IoT domain as inexpensive hardware, commodity operating systems, and wireless connectivity become standard. Industry's security solution is boundary defence, pushing privilege to firewalls and anomaly detectors; however, this propagates rather than minimises privilege and leaves the hierarchy vulnerable to a single boundary compromise.
In contrast, we propose, implement, and evaluate a security architecture based on distributed capabilities. Specifically, we show that object capabilities, representing physical resources, can be constructed, delegated, and used anywhere in a distributed CPS by composing hardware-enforced architectural capabilities and cryptographic network tokens. Our architecture provides defence-in-depth, minimising privilege at every level of the CPS hierarchy, and both supports and adds integrity protection to legacy CPS protocols. We implement distributed capabilities in robotics and ICS demonstrators, and we show that our architecture adds negligible overhead to realistic integrations and can be implemented without significant modification to existing source code.
In contrast, we propose, implement, and evaluate a security architecture based on distributed capabilities. Specifically, we show that object capabilities, representing physical resources, can be constructed, delegated, and used anywhere in a distributed CPS by composing hardware-enforced architectural capabilities and cryptographic network tokens. Our architecture provides defence-in-depth, minimising privilege at every level of the CPS hierarchy, and both supports and adds integrity protection to legacy CPS protocols. We implement distributed capabilities in robotics and ICS demonstrators, and we show that our architecture adds negligible overhead to realistic integrations and can be implemented without significant modification to existing source code.
Keywords
CPS, ICS, capabilities, CHERI
Sponsorship
Engineering and Physical Sciences Research Council (EP/M020320/1)
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.77125
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk