Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks.
View / Open Files
Authors
Hohenschurz-Schmidt, David Johannes
Calcagnini, Giovanni
Dipasquale, Ottavia
Jackson, Jade B
Medina, Sonia
O'Daly, Owen
O'Muircheartaigh, Jonathan
de Lara Rubio, Alfonso
Williams, Steven CR
McMahon, Stephen B
Makovac, Elena
Howard, Matthew A
Publication Date
2020Journal Title
Front Neurosci
ISSN
1662-4548
Publisher
Frontiers Media SA
Volume
14
Pages
147
Language
eng
Type
Article
This Version
VoR
Physical Medium
Electronic-eCollection
Metadata
Show full item recordCitation
Hohenschurz-Schmidt, D. J., Calcagnini, G., Dipasquale, O., Jackson, J. B., Medina, S., O'Daly, O., O'Muircheartaigh, J., et al. (2020). Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks.. Front Neurosci, 14 147. https://doi.org/10.3389/fnins.2020.00147
Abstract
There are bi-directional interactions between the autonomic nervous system (ANS) and pain. This is likely underpinned by a substantial overlap between brain areas of the central autonomic network and areas involved in pain processing and modulation. To date, however, relatively little is known about the neuronal substrates of the ANS-pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects at rest and during tonic noxious cold stimulation. As indicators of autonomic function, we examined how heart rate variability (HRV) frequency measures were influenced by tonic noxious stimulation and how these variables related to participants' pain perception and to brain functional connectivity in regions known to play a role in both ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex (dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS in brain connectivity during pain, linking functional connections of the dACC and PAG with measurements of low frequency (LF)-HRV. In particular, we identified a three-way relationship between the ANS, cortical brain networks known to underpin pain processing, and participants' subjectively reported pain experiences. LF-HRV both at rest and during pain correlated with functional connectivity between the seed regions and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic parameters to brain activity changes involved in the elaboration of nociceptive information, thus beginning to elucidate underlying brain mechanisms associated with the reciprocal relationship between autonomic and pain-related systems.
Keywords
anterior cingulate cortex, autonomic nervous system, fMRI, heart rate variability, pain, periaqueductal gray, resting state
Identifiers
External DOI: https://doi.org/10.3389/fnins.2020.00147
This record's URL: https://www.repository.cam.ac.uk/handle/1810/330622
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk