Repository logo
 

Cell-to-cell and type-to-type heterogeneity of signaling networks: insights from the crowd.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Gabor, Attila 
Tognetti, Marco 
Driessen, Alice 
Tanevski, Jovan 
Guo, Baosen 

Abstract

Recent technological developments allow us to measure the status of dozens of proteins in individual cells. This opens the way to understand the heterogeneity of complex multi-signaling networks across cells and cell types, with important implications to understand and treat diseases such as cancer. These technologies are, however, limited to proteins for which antibodies are available and are fairly costly, making predictions of new markers and of existing markers under new conditions a valuable alternative. To assess our capacity to make such predictions and boost further methodological development, we organized the Single Cell Signaling in Breast Cancer DREAM challenge. We used a mass cytometry dataset, covering 36 markers in over 4,000 conditions totaling 80 million single cells across 67 breast cancer cell lines. Through four increasingly difficult subchallenges, the participants predicted missing markers, new conditions, and the time-course response of single cells to stimuli in the presence and absence of kinase inhibitors. The challenge results show that despite the stochastic nature of signal transduction in single cells, the signaling events are tightly controlled and machine learning methods can accurately predict new experimental data.

Description

Keywords

cell signaling, crowdsourcing, mass cytometry, predictive modeling, single cell

Journal Title

Molecular Systems Biology

Conference Name

Journal ISSN

1744-4292
1744-4292

Volume Title

17

Publisher

European Molecular Biology Organization