Repository logo
 

CRYPTOCHROMES promote daily protein homeostasis.

Published version
Peer-reviewed

Change log

Authors

Stangherlin, Alessandra  ORCID logo  https://orcid.org/0000-0001-7296-1183

Abstract

The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation.

Description

Journal Title

EMBO J

Conference Name

Journal ISSN

0261-4189
1460-2075

Volume Title

Publisher

Springer Nature

Rights and licensing

Except where otherwised noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Sponsorship
Wellcome Trust (093734/Z/10/Z)