Cell-type specialization is encoded by specific chromatin topologies.
View / Open Files
Authors
Kukalev, Alexander
Harabula, Izabela
Zea-Redondo, Luna
Szabó, Dominik
Serebreni, Leonid
Zhang, Yingnan
Irastorza-Azcarate, Ibai
Sparks, Thomas M
Carvalho, Sílvia
Musella, Francesco
Irani, Ehsan
Kolodziejczyk, Aleksandra A
Abentung, Andreas
Apostolova, Galina
Kempfer, Rieke
Dechant, Georg
Ungless, Mark A
Nicodemi, Mario
Welch, Lonnie
Publication Date
2021-11Journal Title
Nature
ISSN
0028-0836
Publisher
Springer Science and Business Media LLC
Volume
599
Issue
7886
Pages
684-691
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Winick-Ng, W., Kukalev, A., Harabula, I., Zea-Redondo, L., Szabó, D., Meijer, M., Serebreni, L., et al. (2021). Cell-type specialization is encoded by specific chromatin topologies.. Nature, 599 (7886), 684-691. https://doi.org/10.1038/s41586-021-04081-2
Abstract
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.
Keywords
Animals, Binding Sites, Brain, Cells, Chromatin, Chromatin Assembly and Disassembly, Gene Expression Regulation, Genes, Male, Mice, Molecular Conformation, Multigene Family, Neurons, Nucleic Acid Denaturation, Transcription Factors
Sponsorship
NIDDK NIH HHS (U54 DK107977)
European Research Council (681893)
NHGRI NIH HHS (UM1 HG011585)
Identifiers
PMC8612935, 34789882
External DOI: https://doi.org/10.1038/s41586-021-04081-2
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332411
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk