Show simple item record

dc.contributor.authorTakahashi, K
dc.contributor.authorFujishiro, H
dc.contributor.authorAinslie, MD
dc.date.accessioned2022-01-10T12:50:34Z
dc.date.available2022-01-10T12:50:34Z
dc.date.issued2021
dc.date.submitted2020-09-23
dc.identifier.issn0953-2048
dc.identifier.othersustabd386
dc.identifier.otherabd386
dc.identifier.othersust-104164.r1
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332548
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>In this work, we propose a new concept of a high gradient trapped field magnet (HG-TFM). The HG-TFM is made from (RE)BaCuO bulk superconductors, in which slit ring bulks (slit-TFMs) are tightly stacked with TFM cylinders (full-TFMs), and state-of-the-art numerical simulations were used to investigate the magnetic and mechanical properties in detail during and after magnetization. A maximum value of the magnetic field gradient product of <jats:inline-formula> <jats:tex-math><?CDATA ${B_z} \cdot {\text{d}}{B_z}/{\text{d}}z$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:mo>⋅</mml:mo> <mml:mrow> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mi>z</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sustabd386ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> = 6040 T<jats:sup>2</jats:sup> m<jats:sup>−1</jats:sup> was obtained after conventional field cooled magnetization (FCM) with an applied field, <jats:italic>B</jats:italic> <jats:sub>app</jats:sub>, of 10 T of the HG-TFM with 60 mm in outer diameter and 10 mm in inner diameter. This value may be the highest value ever reported compared to any other magnetic sources. The <jats:inline-formula> <jats:tex-math><?CDATA ${B_z} \cdot {\text{d}}{B_z}/{\text{d}}z$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:mo>⋅</mml:mo> <mml:mrow> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mi>z</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sustabd386ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> value increased with decreasing inner diameter of the HG-TFM and with increasing <jats:italic>B</jats:italic> <jats:sub>app</jats:sub> during FCM. The electromagnetic stress in the HG-TFM during the FCM process mainly results from the hoop stress along the circumferential direction. The simulations suggested that there is no fracture risk of the bulk components during FCM from 10 T in a proposed realistic configuration of the HG-TFM where both TFM parts are mounted in Al-alloy rings and the whole HG-TFM is encapsulated in a steel capsule. A quasi-zero gravity space can be realized in the HG-TFM with a high <jats:inline-formula> <jats:tex-math><?CDATA ${B_z} \cdot {\text{d}}{B_z}/{\text{d}}z$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:mo>⋅</mml:mo> <mml:mrow> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow> <mml:mtext>d</mml:mtext> </mml:mrow> <mml:mi>z</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sustabd386ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> value in an open space outside the vacuum chamber. The HG-TFM device can act as a compact and cryogen-free desktop-type magnetic source to provide a large magnetic force and could be useful in a number of life/medical science applications, such as protein crystallization and cell culture.</jats:p>
dc.description.sponsorshipJSPS KAKENHI Grant No. 19K05240 Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST), Grant Nos. VP30218088419 and JPMJTM20AK
dc.languageen
dc.publisherIOP Publishing
dc.subjectPaper
dc.subjectbulk superconductors
dc.subjecttrapped field magnets
dc.subjecthigh gradient magnets
dc.subjectfinite element method
dc.subjectmagnetic levitation
dc.subjectquasi-zero gravity
dc.titleA conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth
dc.typeArticle
dc.date.updated2022-01-10T12:50:33Z
prism.issueIdentifier3
prism.publicationNameSuperconductor Science and Technology
prism.volume34
dc.identifier.doi10.17863/CAM.79998
dcterms.dateAccepted2020-12-07
rioxxterms.versionofrecord10.1088/1361-6668/abd386
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0
dc.contributor.orcidTakahashi, K [0000-0002-8278-2688]
dc.contributor.orcidFujishiro, H [0000-0003-1483-835X]
dc.contributor.orcidAinslie, MD [0000-0003-0466-3680]
dc.identifier.eissn1361-6668
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P020313/1)
cam.issuedOnline2021-01-25


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record