Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors.
View / Open Files
Authors
Kasaragod, Vikram Babu
Dorovykh, Valentina
Publication Date
2022-02-09Journal Title
Nature
ISSN
0028-0836
Publisher
Springer Science and Business Media LLC
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Kasaragod, V. B., Mortensen, M., Hardwick, S., Wahid, A., Dorovykh, V., Chirgadze, D., Smart, T. G., & et al. (2022). Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors.. Nature https://doi.org/10.1038/s41586-022-04402-z
Abstract
Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, β-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αβ, α4βδ, α6βδ and α5βγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1βγ, α2βγ and α3βγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αβ GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αβ receptors that adapt them to a role in tonic signalling.
Sponsorship
This work was supported by a Department of Pharmacology new lab start-up fund, the University of Cambridge Isaac Newton & Wellcome Trust Institutional Strategic Support Fund, and Academy of Medical Sciences Springboard Award (SBF004\1074). Electrophysiology work in the laboratory of Professor Trevor Smart was funded by an MRC programme grant (MR/T002581/1) and Wellcome Trust Collaborative Award (217199/Z/19/Z). The cryo-EM facility receives funding from the Wellcome Trust (206171/Z/17/Z; 202905/Z/16/Z) and University of Cambridge.
Funder references
Academy of Medical Sciences (SBF004\1074)
Identifiers
External DOI: https://doi.org/10.1038/s41586-022-04402-z
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332581
Rights
Attribution 4.0 International (CC BY)
Licence URL: http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk