Prevention of the foreign body response to implantable medical devices by inflammasome inhibition.
View / Open Files
Authors
Carnicer-Lombarte, Alejandro
Rutz, Alexandra L
Dimov, Ivan B
Fawcett, James W
Publication Date
2022-03-22Journal Title
Proc Natl Acad Sci U S A
ISSN
0027-8424
Publisher
Proceedings of the National Academy of Sciences
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Barone, D., Carnicer-Lombarte, A., Tourlomousis, P., Hamilton, R. S., Prater, M., Rutz, A. L., Dimov, I. B., et al. (2022). Prevention of the foreign body response to implantable medical devices by inflammasome inhibition.. Proc Natl Acad Sci U S A https://doi.org/10.1073/pnas.2115857119
Abstract
SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.
Sponsorship
Part of the RNA-Seq work was performed with the Genomics and Transcriptomics Core, which is funded by the UK Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_00014/5) and a Wellcome Trust Major Award (208363/Z/17/Z), and guidance from Marcella Ma, whom the authors wish to thank. CEB was supported by a Wellcome Trust Investigator award (108045/Z/15/Z). This work was also supported by the UK Wellcome Trust (Translational Medicine and Therapeutics PhD Programme Fellowship 109511/Z/15/Z to DGB), the UK Health Education England and the National Institute for Health Research (HEE/ NIHR ICA Program Clinical Lectureship CL-2019-14-004 to DGB), the UK Medical Research Council (MRC) and the Sackler Foundation (doctoral training grant RG70550 to ACL), the Engineering and Physical Sciences Research Council (EPSRC) Cambridge NanoDTC (EP/L015978/1), the Centre for Trophoblast Research (MP and RSH), the Whitaker International Scholars Program (ALR), the European Commission’s Horizon 2020 (Marie Sklodowska-Curie Fellowship 797506 to ALR), the Bertarelli Foundation (SPL), the European Research Council (Consolidator Award 772426 to KF), the UK Biotechnology and Biological Sciences Research Council (Research Grant BB/N006402/1 to KF), and the Alexander von Humboldt Foundation (Humboldt Professorship to KF).
Funder references
Wellcome Trust (085686/Z/08/A)
Identifiers
External DOI: https://doi.org/10.1073/pnas.2115857119
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332758
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk