Machine learning optimized polygenic scores for blood cell traits identify sex-specific trajectories and genetic correlations with disease
dc.contributor.author | Xu, Yu | |
dc.contributor.author | Vuckovic, Dragana | |
dc.contributor.author | Ritchie, Scott C | |
dc.contributor.author | Akbari, Parsa | |
dc.contributor.author | Jiang, Tao | |
dc.contributor.author | Grealey, Jason | |
dc.contributor.author | Butterworth, Adam S | |
dc.contributor.author | Ouwehand, Willem H | |
dc.contributor.author | Roberts, David J | |
dc.contributor.author | Di Angelantonio, Emanuele | |
dc.contributor.author | Danesh, John | |
dc.contributor.author | Soranzo, Nicole | |
dc.contributor.author | Inouye, Michael | |
dc.date.accessioned | 2022-01-21T00:30:45Z | |
dc.date.available | 2022-01-21T00:30:45Z | |
dc.date.issued | 2022-01-12 | |
dc.identifier.issn | 2666-979X | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/332819 | |
dc.description.abstract | In this issue of Cell Genomics, Xu et al. report a comprehensive analysis of the genetics of 26 blood cell traits, leveraging data from two large biobanks to construct and make available machine-learning optimized polygenic scores (PGSs). In addition to delivering insights into the biology and clinical associations of these traits, the authors evaluate and provide recommendations on methods for PGS construction. | |
dc.publisher | Elsevier BV | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Blood cell trait | |
dc.subject | Disease assocations | |
dc.subject | Machine learning | |
dc.subject | Method | |
dc.subject | Polygenic score | |
dc.subject | Population stratification | |
dc.title | Machine learning optimized polygenic scores for blood cell traits identify sex-specific trajectories and genetic correlations with disease | |
dc.type | Article | |
dc.publisher.department | Department of Public Health And Primary Care, Cardiovascular Epidemiology Unit | |
dc.date.updated | 2022-01-19T15:04:45Z | |
prism.endingPage | 100086 | |
prism.issueIdentifier | 1 | |
prism.number | 100086 | |
prism.publicationDate | 2022 | |
prism.publicationName | Cell Genomics | |
prism.startingPage | 100086 | |
prism.volume | 2 | |
dc.identifier.doi | 10.17863/CAM.80253 | |
dcterms.dateAccepted | 2021-12-13 | |
rioxxterms.versionofrecord | 10.1016/j.xgen.2021.100086 | |
rioxxterms.version | VoR | |
dc.contributor.orcid | Ritchie, Scott [0000-0002-8454-9548] | |
dc.contributor.orcid | Butterworth, Adam [0000-0002-6915-9015] | |
dc.contributor.orcid | Di Angelantonio, Emanuele [0000-0001-8776-6719] | |
dc.contributor.orcid | Danesh, John [0000-0003-1158-6791] | |
dc.contributor.orcid | Inouye, Michael [0000-0001-9413-6520] | |
dc.identifier.eissn | 2666-979X | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | Medical Research Council (MR/L003120/1) | |
pubs.funder-project-id | British Heart Foundation (None) | |
pubs.funder-project-id | British Heart Foundation (RG/18/13/33946) | |
pubs.funder-project-id | ESRC (ES/T013192/1) | |
pubs.funder-project-id | European Commission Horizon 2020 (H2020) Societal Challenges (101016775) | |
pubs.funder-project-id | National Institute for Health Research (IS-BRC-1215-20014) | |
cam.issuedOnline | 2022-01-12 | |
cam.depositDate | 2022-01-19 | |
pubs.licence-identifier | apollo-deposit-licence-2-1 | |
pubs.licence-display-name | Apollo Repository Deposit Licence Agreement |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge