A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels.
Publication Date
2022-01-17Journal Title
Molecules
ISSN
1420-3049
Publisher
MDPI AG
Volume
27
Issue
2
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Morzy, D., Schaich, M., & Keyser, U. F. (2022). A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels.. Molecules, 27 (2) https://doi.org/10.3390/molecules27020578
Abstract
DNA nanotechnology makes use of hydrophobically modified constructs to create synthetic membrane protein mimics. However, nucleic acid structures exhibit poor insertion efficiency, leading to a low activity of membrane-spanning DNA protein mimics. It is suggested that non-ionic surfactants improve insertion efficiency, partly by disrupting hydrophobicity-mediated clusters. Here, we employed confocal microscopy and single-molecule transmembrane current measurements to assess the effects of the non-ionic surfactant octylpolyoxyethylene (oPOE) on the clustering behavior and membrane activity of cholesterol-modified DNA nanostructures. Our findings uncover the role of aggregation in preventing bilayer interactions of hydrophobically decorated constructs, and we highlight that premixing DNA structures with the surfactant does not disrupt the cholesterol-mediated aggregates. However, we observed the surfactant's strong insertion-facilitating effect, particularly when introduced to the sample separately from DNA. Critically, we report a highly efficient membrane-spanning DNA construct from combining a non-aggregating design with the addition of the oPOE surfactant.
Keywords
synthetic ion channels, nanopores, DNA nanotechnology, surfactant, insertion efficiency
Sponsorship
DM acknowledges funding from the Winton Programme for the Physics of Sustainability and the Engineering and Physical Sciences Research Council (EPSRC, project ref. 1948702). MS acknowledges funding from the Friedrich Naumann Foundation, the Jane Bourque-Driscoll Fund and the Cambridge Philosophical Society. UFK acknowledges the ERC Consolidator Grant (De-signer-Pores 647144).
Funder references
European Research Council (647144)
EPSRC (1948702)
Engineering and Physical Sciences Research Council (1948702)
Identifiers
External DOI: https://doi.org/10.3390/molecules27020578
This record's URL: https://www.repository.cam.ac.uk/handle/1810/333210
Rights
Licence:
https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.