Lesion covariance networks reveal proposed origins and pathways of diffuse gliomas.
View / Open Files
Authors
Romero-Garcia, Rafael
Seidlitz, Jakob
Hart, Michael G
Alexander-Bloch, Aaron F
Suckling, John
Publication Date
2021Journal Title
Brain Commun
ISSN
2632-1297
Publisher
Oxford University Press (OUP)
Volume
3
Issue
4
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Mandal, A. S., Romero-Garcia, R., Seidlitz, J., Hart, M. G., Alexander-Bloch, A. F., & Suckling, J. (2021). Lesion covariance networks reveal proposed origins and pathways of diffuse gliomas.. Brain Commun, 3 (4) https://doi.org/10.1093/braincomms/fcab289
Abstract
Diffuse gliomas have been hypothesized to originate from neural stem cells in the subventricular zone and develop along previously healthy brain networks. Here, we evaluated these hypotheses by mapping independent sources of glioma localization and determining their relationships with neurogenic niches, genetic markers and large-scale connectivity networks. By applying independent component analysis to lesion data from 242 adult patients with high- and low-grade glioma, we identified three lesion covariance networks, which reflect clusters of frequent glioma localization. Replicability of the lesion covariance networks was assessed in an independent sample of 168 glioma patients. We related the lesion covariance networks to important clinical variables, including tumour grade and patient survival, as well as genomic information such as molecular genetic subtype and bulk transcriptomic profiles. Finally, we systematically cross-correlated the lesion covariance networks with structural and functional connectivity networks derived from neuroimaging data of over 4000 healthy UK BioBank participants to uncover intrinsic brain networks that may that underlie tumour development. The three lesion covariance networks overlapped with the anterior, posterior and inferior horns of the lateral ventricles respectively, extending into the frontal, parietal and temporal cortices. These locations were independently replicated. The first lesion covariance network, which overlapped with the anterior horn, was associated with low-grade, isocitrate dehydrogenase -mutated/1p19q-codeleted tumours, as well as a neural transcriptomic signature and improved overall survival. Each lesion covariance network significantly coincided with multiple structural and functional connectivity networks, with the first bearing an especially strong relationship with brain connectivity, consistent with its neural transcriptomic profile. Finally, we identified subcortical, periventricular structures with functional connectivity patterns to the cortex that significantly matched each lesion covariance network. In conclusion, we demonstrated replicable patterns of glioma localization with clinical relevance and spatial correspondence with large-scale functional and structural connectivity networks. These results are consistent with prior reports of glioma growth along white matter pathways, as well as evidence for the coordination of glioma stem cell proliferation by neuronal activity. Our findings describe how the locations of gliomas relate to their proposed subventricular origins, suggesting a model wherein periventricular brain connectivity guides tumour development.
Keywords
Neural stem cells, Glioma, subventricular zone, Functional Connectivity, Structural Connectivity
Sponsorship
Medical Research Council (MR/M009041/1)
Identifiers
34917940, PMC8669792
External DOI: https://doi.org/10.1093/braincomms/fcab289
This record's URL: https://www.repository.cam.ac.uk/handle/1810/333269
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk