Diophantine approximation as Cosmic Censor for Kerr–AdS black holes
dc.contributor.author | Kehle, Christoph | |
dc.date.accessioned | 2022-02-22T16:00:55Z | |
dc.date.available | 2022-02-22T16:00:55Z | |
dc.date.issued | 2022-03 | |
dc.date.submitted | 2020-08-02 | |
dc.identifier.issn | 0020-9910 | |
dc.identifier.other | s00222-021-01078-6 | |
dc.identifier.other | 1078 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/334323 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>The purpose of this paper is to show an unexpected connection between Diophantine approximation and the behavior of waves on black hole interiors with negative cosmological constant <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda <0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Λ</mml:mi> <mml:mo><</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> and explore the consequences of this for the Strong Cosmic Censorship conjecture in general relativity. We study linear scalar perturbations <jats:inline-formula><jats:alternatives><jats:tex-math>$$\psi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ψ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> of Kerr–AdS solving <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Box _g\psi -\frac{2}{3}\Lambda \psi =0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mo>□</mml:mo> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>ψ</mml:mi> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mi>Λ</mml:mi> <mml:mi>ψ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> with reflecting boundary conditions imposed at infinity. Understanding the behavior of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\psi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ψ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> at the Cauchy horizon corresponds to a linear analog of the problem of Strong Cosmic Censorship. Our main result shows that if the dimensionless black hole parameters mass <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {m}} = M \sqrt{-\Lambda }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mi>M</mml:mi> <mml:msqrt> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>Λ</mml:mi> </mml:mrow> </mml:msqrt> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> and angular momentum <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {a}} = a \sqrt{-\Lambda }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:msqrt> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>Λ</mml:mi> </mml:mrow> </mml:msqrt> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> satisfy a certain non-Diophantine condition, then perturbations <jats:inline-formula><jats:alternatives><jats:tex-math>$$\psi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ψ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> arising from generic smooth initial data blow up <jats:inline-formula><jats:alternatives><jats:tex-math>$$|\psi |\rightarrow +\infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>ψ</mml:mi> <mml:mo>|</mml:mo> <mml:mo>→</mml:mo> <mml:mo>+</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> at the Cauchy horizon. The proof crucially relies on a novel resonance phenomenon between stable trapping on the black hole exterior and the poles of the interior scattering operator that gives rise to a small divisors problem. Our result is in stark contrast to the result on Reissner–Nordström–AdS (Kehle in Commun Math Phys 376(1):145–200, 2020) as well as to previous work on the analogous problem for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda \ge 0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Λ</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>—in both cases such linear scalar perturbations were shown to remain bounded. As a result of the non-Diophantine condition, the set of parameters <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {m}}, {\mathfrak {a}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for which we show blow-up forms a Baire-generic but Lebesgue-exceptional subset of all parameters below the Hawking–Reall bound. On the other hand, we conjecture that for a set of parameters <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {m}}, {\mathfrak {a}} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> which is Baire-exceptional but Lebesgue-generic, all linear scalar perturbations remain bounded at the Cauchy horizon <jats:inline-formula><jats:alternatives><jats:tex-math>$$|\psi |\le C$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>ψ</mml:mi> <mml:mo>|</mml:mo> <mml:mo>≤</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>. This suggests that the validity of the <jats:inline-formula><jats:alternatives><jats:tex-math>$$C^0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-formulation of Strong Cosmic Censorship for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda <0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Λ</mml:mi> <mml:mo><</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> may change in a spectacular way according to the notion of genericity imposed.</jats:p> | |
dc.language | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.subject | Article | |
dc.title | Diophantine approximation as Cosmic Censor for Kerr–AdS black holes | |
dc.type | Article | |
dc.date.updated | 2022-02-22T16:00:53Z | |
prism.endingPage | 1321 | |
prism.issueIdentifier | 3 | |
prism.publicationName | Inventiones mathematicae | |
prism.startingPage | 1169 | |
prism.volume | 227 | |
dc.identifier.doi | 10.17863/CAM.81736 | |
dcterms.dateAccepted | 2021-09-24 | |
rioxxterms.versionofrecord | 10.1007/s00222-021-01078-6 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.identifier.eissn | 1432-1297 | |
cam.issuedOnline | 2021-11-24 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router