The Case Against Smooth Null Infinity I: Heuristics and Counter-Examples
Authors
Publication Date
2022-03Journal Title
Annales Henri Poincaré
ISSN
1424-0637
Publisher
Springer Science and Business Media LLC
Volume
23
Issue
3
Pages
829-921
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Kehrberger, L. M. (2022). The Case Against Smooth Null Infinity I: Heuristics and Counter-Examples. Annales Henri Poincaré, 23 (3), 829-921. https://doi.org/10.1007/s00023-021-01108-2
Description
Funder: Cambridge Commonwealth, European and International Trust; doi: http://dx.doi.org/10.13039/501100003343
Funder: Science and Technology Facilities Council; doi: http://dx.doi.org/10.13039/501100000271
Abstract
<jats:title>Abstract</jats:title><jats:p>This paper initiates a series of works dedicated to the rigorous study of the precise structure of gravitational radiation near infinity. We begin with a brief review of an argument due to Christodoulou (in: The Ninth Marcel Grossmann Meeting, World Scientific Publishing Company, Singapore, 2002) stating that Penrose’s proposal of smooth conformal compactification of spacetime (or smooth null infinity) fails to accurately capture the structure of gravitational radiation emitted by <jats:italic>N</jats:italic> infalling masses coming from past timelike infinity <jats:inline-formula><jats:alternatives><jats:tex-math>$$i^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>i</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>. Modelling gravitational radiation by scalar radiation, we then take a first step towards a <jats:italic>dynamical understanding</jats:italic> of the non-smoothness of null infinity by constructing solutions to the spherically symmetric Einstein–Scalar field equations that arise from polynomially decaying boundary data, <jats:inline-formula><jats:alternatives><jats:tex-math>$$r\phi \sim t^{-1}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:mi>ϕ</mml:mi>
<mml:mo>∼</mml:mo>
<mml:msup>
<mml:mi>t</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:tex-math>$$t\rightarrow -\infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>→</mml:mo>
<mml:mo>-</mml:mo>
<mml:mi>∞</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, on a timelike hypersurface (to be thought of as the surface of a star) and the no incoming radiation condition, <jats:inline-formula><jats:alternatives><jats:tex-math>$$r\partial _v\phi =0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>v</mml:mi>
</mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, on past null infinity. We show that if the initial Hawking mass at <jats:inline-formula><jats:alternatives><jats:tex-math>$$i^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>i</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> is nonzero, then, in accordance with the non-smoothness of <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {I}}^+$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>+</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>, the asymptotic expansion of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\partial _v(r\phi )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>v</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>r</mml:mi>
<mml:mi>ϕ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> near <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {I}}^+$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>+</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> reads <jats:inline-formula><jats:alternatives><jats:tex-math>$$\partial _v(r\phi )=Cr^{-3}\log r+{\mathcal {O}}(r^{-3})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>v</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>r</mml:mi>
<mml:mi>ϕ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mi>C</mml:mi>
<mml:msup>
<mml:mi>r</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>log</mml:mo>
<mml:mi>r</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>O</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msup>
<mml:mi>r</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> for some non-vanishing constant <jats:italic>C</jats:italic>. In fact, the same logarithmic terms appear already in the linear theory, i.e. when considering the spherically symmetric linear wave equation on a fixed Schwarzschild background. As a corollary, we can apply our results to the scattering problem on Schwarzschild: Putting compactly supported scattering data for the linear (or coupled) wave equation on <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {I}}^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> and on <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {H}}^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>, we find that the asymptotic expansion of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\partial _v(r\phi )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>v</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>r</mml:mi>
<mml:mi>ϕ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> near <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {I}}^+$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>+</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> generically contains logarithmic terms at second order, i.e. at order <jats:inline-formula><jats:alternatives><jats:tex-math>$$r^{-4}\log r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>r</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>4</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>log</mml:mo>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>.</jats:p>
Keywords
Article
Identifiers
s00023-021-01108-2, 1108
External DOI: https://doi.org/10.1007/s00023-021-01108-2
This record's URL: https://www.repository.cam.ac.uk/handle/1810/335172
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk