(ℓ,p)-Jones-Wenzl idempotents
View / Open Files
Publication Date
2022Journal Title
Journal of Algebra
ISSN
0021-8693
Publisher
Elsevier BV
Volume
603
Pages
41-60
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Martin, S., & Spencer, R. (2022). (ℓ,p)-Jones-Wenzl idempotents. Journal of Algebra, 603 41-60. https://doi.org/10.1016/j.jalgebra.2022.03.022
Abstract
The Jones-Wenzl idempotents of the Temperley-Lieb algebra are celebrated
elements defined over characteristic zero and for generic loop parameter.
Given pointed field $(R, \delta)$, we extend the existing results of Burrull,
Libedinsky and Sentinelli to determine a recursive form for the idempotents
describing the projective cover of the trivial ${\rm TL}_n^R(\delta)$-module.
Sponsorship
EPSRC (2114521)
Engineering and Physical Sciences Research Council (2114521)
Engineering and Physical Sciences Research Council (EP/N509620/1)
Identifiers
External DOI: https://doi.org/10.1016/j.jalgebra.2022.03.022
This record's URL: https://www.repository.cam.ac.uk/handle/1810/336532
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.