Repository logo
 

Trapping plasmonic nanoparticles with MHz electric fields

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Dielectrophoresis drives the motion of nanoparticles through the interaction of their induced dipoles with a non-uniform electric field. We experimentally observe rf dielectrophoresis on 100 nm diameter gold nanoparticles in a solution and show that for MHz frequencies, the nanoparticles can reversibly aggregate at electrode gaps. A frequency resonance is observed at which reversible trapping of gold nanoparticle “clouds” occurs in the gap center, producing almost a 1000-fold increase in density. Through accounting for gold cores surrounded by a conducting double layer ion shell, a simple model accounts for this reversibility. This suggests that substantial control over nanoparticle separation is possible, enabling the formation of equilibrium nanoarchitectures in specific locations.

Description

Journal Title

Applied Physics Letters

Conference Name

Journal ISSN

0003-6951
1077-3118

Volume Title

Publisher

AIP Publishing

Rights and licensing

Except where otherwised noted, this item's license is described as All rights reserved
Sponsorship
Engineering and Physical Sciences Research Council (EP/L027151/1)
Engineering and Physical Sciences Research Council (EP/P029426/1)
European Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
European Commission Horizon 2020 (H2020) ERC (883703)
Engineering and Physical Sciences Research Council (EP/L015978/1)

Relationships

Is supplemented by: