Repository logo
 

The DP5 probability, quantification and visualisation of structural uncertainty in single molecules.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Abstract

Whenever a new molecule is made, a chemist will justify the proposed structure by analysing the NMR spectra. The widely-used DP4 algorithm will choose the best match from a series of possibilities, but draws no conclusions from a single candidate structure. Here we present the DP5 probability, a step-change in the quantification of molecular uncertainty: given one structure and one 13C NMR spectra, DP5 gives the probability of the structure being correct. We show the DP5 probability can rapidly differentiate between structure proposals indistinguishable by NMR to an expert chemist. We also show in a number of challenging examples the DP5 probability may prevent incorrect structures being published and later reassigned. DP5 will prove extremely valuable in fields such as discovery-driven automated chemical synthesis and drug development. Alongside the DP4-AI package, DP5 can help guide synthetic chemists when resolving the most subtle structural uncertainty. The DP5 system is available at https://github.com/Goodman-lab/DP5.

Description

Keywords

3403 Macromolecular and Materials Chemistry, 34 Chemical Sciences, Generic health relevance

Journal Title

Chem Sci

Conference Name

Journal ISSN

2041-6520
2041-6539

Volume Title

13

Publisher

Royal Society of Chemistry (RSC)
Sponsorship
Engineering and Physical Sciences Research Council (EP/N509620/1)