The Role of Long-Alkyl-Group Spacers in Glycolated Copolymers for High-Performance Organic Electrochemical Transistors.

Kim, Jingwan 
Pitsalidis, Charalampos  ORCID logo

Change log

Semiconducting polymers with oligoethylene glycol (OEG) sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. In this work, new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene (T) and vinylene (V) thiophene-based donor units are synthesized and characterized for accumulation mode OECTs, where a long-alkyl-group (C12 ) attached to the DPP unit acts as a spacer distancing the OEG groups from the polymer backbone. gDPP-TTVTT shows the highest OECT transconductance (61.9 S cm-1 ) and high operational stability, compared to gDPP-TTT and their alkylated counterparts. Surprisingly, gDPP-TTVTT also shows high electronic charge mobility in a field-effect transistor, suggesting efficient ion injection/diffusion without hindering its efficient electronic charge transport. The elongated donor unit (TTVTT) facilitates hole polaron formation to be more localized to the donor unit, leading to faster and easier polaron formation with less impact on polymer structure during OECT operation, as opposed to the TTT unit. This is supported by molecular dynamics simulation. These simultaneously high electronic and ionic charge-transport properties are achieved due to the long-alkyl-group spacer in amphipathic sidechains, providing an important molecular design rule for glycolated copolymers.

Publication Date
Online Publication Date
Acceptance Date
accumulation mode, amphipathic sidechains, conjugated polymers, long-alkyl-group spacers, organic electrochemical transistors
Journal Title
Adv Mater
Journal ISSN
Volume Title
Plastic Electronics Centre for Doctoral Training (EP/L016702/1)
NRF (2021R1A2B5B03086367)
NRF (2018R1C1B6006177)
European Research Council under the European Union's Horizon 2020 (742708)