Towards a digital twin-based intelligent decision support for road maintenance
View / Open Files
Authors
Consilvio, Alice
Hernández, José Solís
Brilakis, Ioannis
Bartoccini, Luca
Gennaro, Federico Di
Welie, Mara van
Conference Name
AIIT 3rd International Conference on Transport Infrastructure and Systems (TIS ROMA 2022)
Type
Conference Object
This Version
VoR
Metadata
Show full item recordCitation
Consilvio, A., Hernández, J. S., Chen, W., Brilakis, I., Bartoccini, L., Gennaro, F. D., & Welie, M. v. Towards a digital twin-based intelligent decision support for road maintenance. AIIT 3rd International Conference on Transport Infrastructure and Systems (TIS ROMA 2022). https://doi.org/10.17863/CAM.85824
Abstract
The digitalisation, automation and robotisation of road inspection and maintenance technologies make it possible to collect bigger volumes of data and additional types of information about road infrastructure. Methodologies and tools to support road asset management decision-making are needed to exploit this new information, progressing towards predictive maintenance and improving different aspects of road asset management. This study presents a Digital Twin-based Decision Support Tool to assist road operators in road inspection, maintenance and upgrade. The goal of the paper is twofold. First, the architecture of the Digital Twin-based Decision Support Tool is presented, describing the main components and functionalities. The system is based on a Digital Twin (DT) that mirrors real road assets to integrate different sources of data and support the processing of low-level data into high-level information. The decision support tool (DST) is able to analyse the collected information and compute the road pavement condition to derive optimal intervention plans, addressing road section conditions, human and technical resources and other external constraints. Second, the application of the proposed architecture to road pavement maintenance is described, considering the Italian highway A24 and its connections with Rome´s ring road, managed by Strada dei Parchi SpA. Road pavement data, such as the International Roughness Index (IRI) and the Sideway Force Coefficient (SFC), are integrated into the DT to be analysed through Artificial Intelligence-clustering techniques to perform the sectioning and clustering of road sections according to their status and quality index. The paper shows the benefits derived from the integration of DT technologies with DSTs for improving processes of road maintenance.
Sponsorship
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 955269.
Funder references
European Commission Horizon 2020 (H2020) Industrial Leadership (IL) (955269)
Embargo Lift Date
2100-01-01
Identifiers
External DOI: https://doi.org/10.17863/CAM.85824
This record's URL: https://www.repository.cam.ac.uk/handle/1810/338411
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Licence URL: https://creativecommons.org/licenses/by-nc-nd/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk