Interfacial metric mechanics: stitching patterns of shape change in active sheets.
Publication Date
2022-06Journal Title
Proc Math Phys Eng Sci
ISSN
1364-5021
Publisher
The Royal Society
Volume
478
Issue
2262
Language
en
Type
Article
This Version
AO
VoR
Metadata
Show full item recordCitation
Feng, F., Duffy, D., Warner, M., & Biggins, J. (2022). Interfacial metric mechanics: stitching patterns of shape change in active sheets.. Proc Math Phys Eng Sci, 478 (2262) https://doi.org/10.1098/rspa.2022.0230
Abstract
A flat sheet programmed with a planar pattern of spontaneous shape change will morph into a curved surface. Such metric mechanics is seen in growing biological sheets, and may be engineered in actuating soft matter sheets such as phase-changing liquid crystal elastomers (LCEs), swelling gels and inflating baromorphs. Here, we show how to combine multiple patterns in a sheet by stitching regions of different shape changes together piecewise along interfaces. This approach allows simple patterns to be used as building blocks, and enables the design of multi-material or active/passive sheets. We give a general condition for an interface to be geometrically compatible, and explore its consequences for LCE/LCE, gel/gel and active/passive interfaces. In contraction/elongation systems such as LCEs, we find an infinite set of compatible interfaces between any pair of patterns along which the metric is discontinuous, and a finite number across which the metric is continuous. As an example, we find all possible interfaces between pairs of LCE logarithmic spiral patterns. By contrast, in isotropic systems such as swelling gels, only a finite number of continuous interfaces are available, greatly limiting the potential of stitching. In both continuous and discontinuous cases, we find the stitched interfaces generically carry singular Gaussian curvature, leading to intrinsically curved folds in the actuated surface. We give a general expression for the distribution of this curvature, and a more specialized form for interfaces in LCE patterns. The interfaces thus also have rich geometric and mechanical properties in their own right.
Keywords
Research articles, Gaussian curvature, active materials, metric compatibility, interface
Sponsorship
Engineering and Physical Sciences Research Council (EP/L015552/1)
Engineering and Physical Sciences Research Council (EP/P034616/1)
Identifiers
rspa20220230
External DOI: https://doi.org/10.1098/rspa.2022.0230
This record's URL: https://www.repository.cam.ac.uk/handle/1810/338605
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk