Repository logo
 

Numerical Investigation of High-Temperature Superconducting-Coated-Conductors Subjected to Rotating Magnetic Fields

Published version
Peer-reviewed

Change log

Abstract

Over time, high-temperature superconductor (HTS)-coated conductors (CCs) have proven to be promising candidates for future high-efficiency and high-power density electrical machines. However, their commercialization is handicapped due to the AC dissipative loss that occurs upon exposure to external magnetic fields. In rotating electromagnetic devices, the external magnetic field is a combination of alternating and rotating magnetic fields. Most of the research is devoted to the effect of exposure of the superconductors to alternating magnetic fields only. This article presents an investigation to observe the behavior of HTSCCs under rotating magnetic fields, particularly the AC loss, using a finite-element-based homogeneous H-formulation technique. Our investigation shows that the AC loss could be considerably high when HTSCCs are exposed to rotating magnetic fields and, ultimately, could affect the cooling efficiency of future high-efficiency and high-power density electrical machines.

Description

Peer reviewed: True

Journal Title

Solids

Conference Name

Journal ISSN

0997-7538
2673-6497

Volume Title

3

Publisher

MDPI AG

Rights and licensing

Except where otherwised noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/
Sponsorship
Australian Research Council Discovery Project (DP180100470)