Repository logo
 

Comprehensive study of Raman optical response of typical substrates for thin-film growth under 633 nm and 785 nm laser excitation.

Accepted version
Peer-reviewed

Change log

Abstract

Raman spectroscopy is one of the most efficient and non-destructive techniques for characterizing materials. However, it is challenging to analyze thin films using Raman spectroscopy since the substrates beneath the thin film often obscure its optical response. Here, we evaluate the suitability of fourteen commonly employed single-crystal substrates for Raman spectroscopy of thin films using 633 nm and 785 nm laser excitation systems. We determine the optimal wavenumber ranges for thin-film characterization by identifying the most prominent Raman peaks and their relative intensities for each substrate and across substrates. In addition, we compare the intensity of background signals across substrates, which is essential for establishing their applicability for Raman detection in thin films. The substrates LaAlO3 and Al2O3 have the largest free spectral range for both laser systems, while Al2O3 has the lowest background levels, according to our findings. In contrast, the substrates SrTiO3 and Nb:SrTiO3 have the narrowest free spectral range, while GdScO3, NGO and MgO have the highest background levels, making them unsuitable for optical investigations.

Description

Journal Title

Opt Express

Conference Name

Journal ISSN

1094-4087
1094-4087

Volume Title

Publisher

Optica Publishing Group

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
Leverhulme Trust (RPG-2021-058)
Royal Society (RGS\R1\221262)
Royal Academy of Engineering (RAEng) (CiET1819\24)
EPSRC (EP/T012218/1)
European Commission Horizon 2020 (H2020) ERC (882929)

Relationships

Is supplemented by: