Repository logo
 

Horner–Wadsworth–Emmons olefination of proteins and glycoproteins

Published version
Peer-reviewed

Repository DOI


Change log

Abstract

Chemo-selective modifications of proteins are fundamental to the advancement of biological and pharmaceutical sciences. The search for biocompatible chemical reactions has prompted us to investigate Horner–Wadsworth–Emmons (HWE) olefinations, iconic reactions in organic synthesis that would give rise to new selective protein olefinations. Our choice of HWE olefinations was inspired by the growing number of methods for generating aldehydes as transient reactive groups in proteins and the potential for mild and simple reaction conditions. Here we show that HWE olefination reactions on aldehydes, produced by both chemical and enzymatic methods, are compatible with physiological conditions and highly selective in small and large proteins, including therapeutic antibodies and stable recombinant proteins exemplified by green fluorescent protein. Reaction kinetics can be fine-tuned over orders of magnitude both by judicious use of substituents and pH regulation. The electrophilic nature of the HWE olefination products can be tuned to allow for subsequent nucleophilic additions, including thiol- and phospha-Michael additions. Our results demonstrate that HWE olefination of aldehydes in proteins provides efficient and selective bioconjugation chemistries that are orthogonal to existing methods.

Description

Acknowledgements: We acknowledge funding by the Engineering and Physical Sciences Research Council (EPSRC), Biotechnology and Biological Sciences Research Council (BBSRC) and AstraZeneca plc under the Prosperity Partnership grant no. EP/S005226/1. We are grateful to M. Cliff, R. Spiess, M. Papworth and T. Murray for their support with 19F-NMR, MS analyses and antibody glycoengineering discussions.


Funder: EPSRC

Keywords

Journal Title

Nature Synthesis

Conference Name

Journal ISSN

2731-0582

Volume Title

3

Publisher

Nature Publishing Group UK

Rights and licensing

Except where otherwised noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Sponsorship
RCUK | Engineering and Physical Sciences Research Council (EPSRC) (EP/S005226/1, EP/S005226/1, EP/S005226/1, EP/S005226/1, EP/S005226/1, EP/S005226/1)