Repository logo
 

Raman Spectroscopy Measurements Support Disorder-Driven Capacitance in Nanoporous Carbons.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Our recent study of 20 nanoporous activated carbons showed that a more disordered local carbon structure leads to enhanced capacitive performance in electrochemical double layer capacitors. Specifically, NMR spectroscopy measurements and simulations of electrolyte-soaked carbons evidenced that nanoporous carbons with smaller graphene-like domains have larger capacitances. In this study, we use Raman spectroscopy, a common probe of local structural disorder in nanoporous carbons, to test the disorder-driven capacitance theory. It is found that nanoporous carbons with broader D bands and smaller ID/IG intensity ratios exhibit higher capacitance. Most notably, the ID/IG intensity ratio probes the in-plane sizes of graphene-like domains and supports the findings from NMR that smaller graphene-like domains correlate with larger capacitances. This study supports our finding that disorder is a key metric for high capacitance in nanoporous carbons and shows that Raman spectroscopy is a powerful technique that allows rapid screening to identify nanoporous carbons with superior performance in supercapacitors.

Description

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

Publisher

American Chemical Society (ACS)

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
MRC (MR/T043024/1)
Horizon Europe UKRI Underwrite ERC (EP/X042693/1)

Relationships

Is supplemented by: