Repository logo
 

Disentangling the retention preferences of estuarine suspended particulate matter for diverse microplastic types.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

As a major source of microplastics (MPs) for global oceans, estuarine MPs pose challenges for numerical modeling due to their particle diversity, while hydrodynamics and suspended particulate matter (SPM) further exacerbate transport prediction uncertainties. This study employs a categorization framework to pinpoint 16 representative MPs types, precisely simulating their transport processes in the Yangtze River estuary (YRE). Furthermore, spatial links between SPM concentrations and MP types at 1800+ simulated sites were examined using ArcGIS and bivariate Local Indicators of Spatial Association (BI-LISA). Results indicate that low-density (≤0.95 g/cm³), small-diameter (<500 μm) fiber MPs are more prone to hetero-aggregation with estuarine SPM flocs, while MPs with opposite characteristics may move depending on their intrinsic properties. High-high BI-LISA clusters were observed both in river branches and at the confluence with the sea, the latter closely associated with the turbidity maximum zone that promote MP hetero-aggregation. The interaction of these currents and Yangtze (Changjiang) diluted water forms MPs clusters between 122.0°E and 122.5°E at the confluence of the South Branch, averaging over 870 μg/m3. Examining the trapping preferences of estuarine SPMs for various MPs through this classification framework can help to determine the bioavailability of environmental MPs to aquatic organisms and map the MPs baseline values for health risk quantification.

Description

Journal Title

Environ Pollut

Conference Name

Journal ISSN

0269-7491
1873-6424

Volume Title

366

Publisher

Elsevier

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International