Repository logo
 

The Gaia -ESO Survey: Probes of the inner disk abundance gradient

Published version
Peer-reviewed

Change log

Authors

Jacobson, HR 
Friel, ED 
Jílková, L 
Magrini, L 
Bragaglia, A 

Abstract

The nature of the metallicity gradient inside the solar circle (R_GC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. The GES open clusters exhibit a radial metallicity gradient of -0.10+-0.02 dex/kpc, consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range R_GC ~ 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature.

Description

Keywords

Galaxy: formation, Galaxy: disk, Galaxy: abundances, stars: abundances

Journal Title

Astronomy and Astrophysics

Conference Name

Journal ISSN

0004-6361
1432-0746

Volume Title

591

Publisher

EDP Sciences
Sponsorship
European Research Council (320360)
Leverhulme Trust (RPG-2012-541)
This work was partly supported by the European Union FP7 programme through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell’ Istruzione, dell’ Università e della Ricerca (MIUR) in the form of the grant “Premiale VLT 2012” and “The Chemical and Dynamical Evolution of the Milky Way and Local Group Galaxies” (prot. 2010LY5N2T). The results presented here benefit from discussions held during the Gaia-ESO workshops and conferences supported by the ESF (European Science Foundation) through the GREAT Research Network Programme. F.J.E. acknowledges financial support from the ARCHES project (7th Framework of the European Union, n 313146). S.V. gratefully acknowledges the support provided by Fondecyt reg. 1130721. U.H. acknowledges support from the Swedish National Space Board (SNSB). D.G. gratefully acknowledges support from the Chilean BASAL Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA) grant PFB-06/2007.