Repository logo
 

Focal mechanisms and size distribution of earthquakes beneath the Krafla central volcano, NE Iceland

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Schuler, J 
Pugh, DJ 
Hauksson, E 
White, RS 
Stock, JM 

Abstract

jats:titleAbstract</jats:title>jats:pSeismicity was monitored beneath the Krafla central volcano, NE Iceland, between 2009 and 2012 during a period of volcanic quiescence, when most earthquakes occurred within the shallow geothermal field. The highest concentration of earthquakes is located close to the rock‐melt transition zone as the Iceland Deep Drilling Project‐1 (IDDP‐1) wellbore suggests and decays quickly at greater depths. We recorded multiple swarms of microearthquakes, which coincide often with periods of changes in geothermal field operations, and found that about one third of the total number of earthquakes are repeating events. The event size distribution, evaluated within the central caldera, indicates average crustal values withjats:italicb</jats:italic>= 0.79 ± 0.04. No significant spatialjats:italicb</jats:italic> value contrasts are resolved within the geothermal field nor in the vicinity of the drilled melt. Besides the seismicity analysis, focal mechanisms are calculated for 342 events. Most of these short‐period events have source radiation patterns consistent with double‐couple (DC) mechanisms. A few events are attributed to non‐shear‐faulting mechanisms with geothermal fluids likely playing an important role in their source processes. Diverse faulting styles are inferred from DC events, but normal faulting prevails in the central caldera. The best fitting compressional and tensional axes of DC mechanisms are interpreted in terms of the principal stress or deformation rate orientations across the plate boundary rift. Maximum compressive stress directions are near‐vertically aligned in different study volumes, as expected in an extensional tectonic setting. Beneath the natural geothermal fields, the least compressive stress axis is found to align with the regional spreading direction. In the main geothermal field both horizontal stresses appear to have similar magnitudes causing a diversity of focal mechanisms.</jats:p>

Description

Keywords

seismicity, geothermal field, focal mechanisms, extensional plate boundary

Journal Title

Journal of Geophysical Research: Solid Earth

Conference Name

Journal ISSN

2169-9313
2169-9356

Volume Title

121

Publisher

American Geophysical Union (AGU)
Sponsorship
Natural Environment Research Council (NE/H025006/1)
We thank Julian Drew for the use of his CMM algorithm and Jon Tarasewicz for acquiring the bulk of the field data. Seismometers were borrowed from SEIS-UK under loan 891, with additional data from SIL network stations operated by the Icelandic Meteorological Office. The data will be stored at IRIS (www.iris.edu) and accessible from there. The Natural Environment Research Council UK funded the fieldwork. Landsvirkjun supported the field campaigns and provided borehole information. We thank two anonymous reviewers for critically reading this paper. J.S. also thanks Y. Kamer and S. Hiemer for discussing parts of their b value method. Data were mainly processed using the ObsPy package and visualized using Matplotlib and Generic Mapping Tools. Cambridge University Department of Earth Sciences contribution number ESC.3672. J.S. was supported by the Swiss National Science Foundation.