Repository logo
 

A mouse model of gestational diabetes shows dysregulated lipid metabolism post-weaning, after return to euglycaemia.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Fernandez-Twinn, Denise S  ORCID logo  https://orcid.org/0000-0003-2610-277X
Beeson, Jessica H 
Chiarugi, Davide 
Ozanne, Susan E 

Abstract

BACKGROUND: Gestational diabetes is associated with increased risk of type 2 diabetes mellitus and cardiovascular disease for the mother in the decade after delivery. However, the molecular mechanisms that drive these effects are unknown. Recent studies in humans have shown that lipid metabolism is dysregulated before diagnosis of and during gestational diabetes and we have shown previously that lipid metabolism is also altered in obese female mice before, during and after pregnancy. These observations led us to the hypothesis that this persistent dysregulation reflects an altered control of lipid distribution throughout the organism. METHODS: We tested this in post-weaning (PW) dams using our established mouse model of obese GDM (high fat, high sugar, obesogenic diet) and an updated purpose-built computational tool for plotting the distribution of lipid variables throughout the maternal system (Lipid Traffic Analysis v2.3). RESULTS: This network analysis showed that unlike hyperglycaemia, lipid distribution and traffic do not return to normal after pregnancy in obese mouse dams. A greater range of phosphatidylcholines was found throughout the lean compared to obese post-weaning dams. A range of triglycerides that were found in the hearts of lean post-weaning dams were only found in the livers of obese post-weaning dams and the abundance of odd-chain FA-containing lipids differed locally in the two groups. We have therefore shown that the control of lipid distribution changed for several metabolic pathways, with evidence for changes to the regulation of phospholipid biosynthesis and FA distribution, in a number of tissues. CONCLUSIONS: We conclude that the control of lipid metabolism is altered following an obese pregnancy. These results support the hypothesis that obese dams that developed GDM maintain dysregulated lipid metabolism after pregnancy even when glycaemia returned to normal, and that these alterations could contribute to the increased risk of later type 2 diabetes and cardiovascular disease.

Description

Keywords

Animals, Diabetes Mellitus, Type 2, Diabetes, Gestational, Diet, High-Fat, Female, Lipid Metabolism, Mice, Pregnancy, Weaning

Journal Title

Nutr Diabetes

Conference Name

Journal ISSN

2044-4052
2044-4052

Volume Title

12

Publisher

Springer Science and Business Media LLC
Sponsorship
British Heart Foundation (None)
Medical Research Council (MC_UU_12012/4)
British Heart Foundation (RG/17/12/33167)
Biotechnology and Biological Sciences Research Council (BB/M027252/1)
Medical Research Council (MC_UU_12012/5)
MRC (MC_UU_00014/4)
Biotechnology and Biological Sciences Research Council (BB/M027252/2)
Medical Research Council (MC_PC_12012)