Repository logo
 

Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites

Published version
Peer-reviewed

Change log

Authors

Einsle, JF 
Harrison, RJ 
Kasama, T 
Conbhuí, P 
Fabian, K 

Abstract

Dusty olivine (olivine containing multiple sub-micrometer inclusions of metallic iron) in chondritic meteorites is considered an ideal carrier of paleomagnetic remanence, capable of maintaining a faithful record of pre-accretionary magnetization acquired during chondrule formation. Here we show how the magnetic architecture of a single dusty olivine grain from the Semarkona LL3.0 ordinary chondrite meteorite can be fully characterised in three dimensions, using a combination of Focussed-Ion-Beam nanotomography (FIB-nT), electron tomography and finite-element micromagnetic modelling. We present a three-dimensional (3D) volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including the distribution of particle sizes, shapes, interparticle spacings and orientations. Iron particles are predominantly oblate ellipsoids with average radii 242 ± 94 nm by 199 ± 80 nm by 123 ± 58 nm. Using analytical TEM we observe that the particles nucleate on sub-grain boundaries and are loosely arranged in a series of sheets parallel to (001) of the olivine host. This is in agreement with the orientation data collected using the FIB-nT, and highlights how the underlying texture of the dusty olivine is crystallographically constrained by the olivine host. The shortest dimension of the particles is oriented normal to the sheets and their longest dimension is preferentially aligned within the sheets. Individual particle geometries are converted to a finite-element mesh and used to perform micromagnetic simulations. The majority of particles adopt a single vortex state, with ‘bulk’ spins that rotate around a central vortex core. We observed no particles, which are in a true single domain state. The results of the micromagnetic simulations challenge some pre-conceived ideas about the remanence carrying properties of vortex states. There is often not a simple predictive relationship between the major, intermediate and minor axes of the particles and the remanence vector imparted in different fields. Although the orientation of the vortex core is determined largely by the ellipsoidal geometry (i.e., parallel to the major axis for prolate ellipsoids and parallel to the minor axis for oblate ellipsoids), the core and remanence vectors can sometimes lie at very large (tens of degree) angles to the principal axes. The subtle details of the morphology can control the overall remanence state, leading in some cases to a dominant contribution from the bulk spins to the net remanence, with profound implications for predicting the anisotropy of the sample. The particles have very high switching fields (several hundred mT), demonstrating their high stability and suitability for paleointensity studies.

Description

Keywords

Rock magnetism, dusty olivine, micromagnetics, tomography, FIB-SEM, TEM, meteorites, Semarkona

Journal Title

American Mineralogist

Conference Name

Journal ISSN

0003-004X
1945-3027

Volume Title

Publisher

Mineralogical Society of America
Sponsorship
European Research Council (291522)
The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreements 291522-3DIMAGE (P.A.M.) and 320750 - Nanopaleomagnetism (J.F.E., R.J.H., and P.A.M.). BPW and RRF were supported by NASA Emerging Worlds program grant #NNX15AH72G, the NASA Solar System Exploration and Research Virtual Institute grant #NNA14AB01A, and a generous gift from Thomas F. Peterson, Jr. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 320832-Imagine. (W.W . and P.O.C.) W.W. was also supported for this research under NERC grant NE/J020966/1 - Predicting the reliability with which the geomagnetic field can be recorded in igneous rocks.