Repository logo
 

Revisiting metal fluorides as lithium-ion battery cathodes.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Eggeman, Alexander S  ORCID logo  https://orcid.org/0000-0002-3447-4322
Castillo-Martínez, Elizabeth 
Robert, Rosa 
Geddes, Harry S 

Abstract

Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/β-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.

Description

Keywords

40 Engineering, 4016 Materials Engineering, 34 Chemical Sciences, 3406 Physical Chemistry

Journal Title

Nat Mater

Conference Name

Journal ISSN

1476-1122
1476-4660

Volume Title

20

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
Royal Society (WM150023)
Engineering and Physical Sciences Research Council (EP/P022596/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (747449)
X.H. is supported by funding from EPSRC Doctoral Prize, Adolphe Merkle and the Swiss National Science Foundation (Program NRP70 No. 153990) and European Commission via MSCA (Grant 798169). A.S.E. acknowledges financial support from the Royal Society. E.C.M. acknowledges funding from European Commission via MSCA (Grant 747449) and RTI2018-094550-A-100 from MICINN. Z. L. acknowledges funding from the Faraday Institution via the FutureCat consortium. C.J.P. is supported by the Royal Society through a Royal Society Wolfson Research Merit award, and EPSRC grant EP/P022596/1. A.L.G. acknowledges funding from the ERC (Grant 788144). This research was supported as part of the North Eastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001294. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Work done at Diamond Light Source was under Proposal EE17315-1. The authors are grateful to Prof. G. Ceder and other NECCES members for many stimulating discussions concerning fluoride-based conversion reactions and on the origins of structural hysteresis. The authors also acknowledge the help from S. Dutton, T. Dean, A. Docker, M. Leskes and D. Keeble.