Repository logo
 

Substantiation of buried two dimensional hole gas (2DHG) existence in GaN-on-Si epitaxial heterostructure

Published version
Peer-reviewed

Type

Article

Change log

Authors

Sun, J 
Longobardi, Giorgia  ORCID logo  https://orcid.org/0000-0001-9994-851X
Zhu, C 
Camuso, G 

Abstract

Gallium Nitride on Silicon (GaN-on-Si) devices feature a relatively thick epi buffer layer to release the stress related to the lattice constant mismatch between GaN and Si. The buffer layer is formed by several AlGaN-based transition layers with different Al contents. This work addresses the fundamental question of whether two-dimensional hole gases (2DHGs) exist at those interfaces where the theory predicts a high concentration of a negative fixed charge as a consequence of the discontinuity in polarization between the layers. In this study, we demonstrate that the presence of such 2DHGs is consistent with the measured vertical Capacitance-Votage Profiling (CV) and Technology Caomputer-Aided Design (TCAD) simulation in the whole range of measurable frequencies (10 mHz–1 MHz). N-type compensating background donor included in the epi structure in the simulation deck proves to be crucial to explain the depletion region extension consistent with the CV experimental data. For the standard range of frequencies (1 kHz–1 MHz), there was no indication of the presence of 2DHGs. A set of ultra-low frequency (10 mHz–10 Hz) measurements performed were able to reveal the existence of 2DHGs. The outcome of these ultra-low frequency experiments was matched with TCAD simulations which validated our theory.

Description

Keywords

51 Physical Sciences, 5104 Condensed Matter Physics

Journal Title

Applied Physics Letters

Conference Name

Journal ISSN

0003-6951
1077-3118

Volume Title

110

Publisher

AIP Publishing