Enriching WPCs and NFPCs with Carbon Nanotubes and Graphene.

Change log
Łukawski, Damian 
Hochmańska-Kaniewska, Patrycja  ORCID logo  https://orcid.org/0000-0002-5524-6564
Janiszewska, Dominika 
Wróblewski, Grzegorz 
Patmore, Jeff 

Carbon nanotubes (CNTs) and graphene, with their unique mechanical, electrical, thermal, optical, and wettability properties, are very effective fillers for many types of composites. Recently, a number of studies have shown that CNTs and graphene may be integrated into wood-plastic composites (WPCs) and natural-fibre-reinforced polymer composites (NFPCs) to improve the existing performance of the WPCs/NFPCs as well as enabling their use in completely new areas of engineering. The following review analyses the results of the studies presented to date, from which it can be seen that that inclusion of CNTs/graphene may indeed improve the mechanical properties of the WPCs/NFPCs, while increasing their thermal conductivity, making them electroconductive, more photostable, less sensitive to water absorption, less flammable, and more thermally stable. This study indicates that the composition and methods of manufacturing of hybrid WPCs/NFPCs vary significantly between the samples, with a consequent impact on the level of improvement of specific properties. This review also shows that the incorporation of CNTs/graphene may enable new applications of WPCs/NFPCs, such as solar thermal energy storage devices, electromagnetic shielding, antistatic packaging, sensors, and heaters. Finally, this paper recognises key challenges in the study area, and proposes future work.

wood–plastic composites, natural fibre–plastic composites, carbon nanotubes, MWCNTs, graphene, graphene oxide, graphene nanoplatelets, hybrid composites
Journal Title
Polymers (Basel)
Conference Name
Journal ISSN
Volume Title
National Science Center (TANGO-IV-A/0014/2019-00)