Repository logo

Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State

Published version



Change log


jats:titleAbstract</jats:title> jats:pType Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ jats:italicz</jats:italic> ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-jats:italicz</jats:italic> HST data with 42 SNe Ia at jats:italicz</jats:italic> < 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, jats:italicw</jats:italic>. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5jats:italicσ</jats:italic>−2.5jats:italicσ</jats:italic> significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + jats:italicw</jats:italic> = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure jats:italicH</jats:italic> jats:sub0</jats:sub> = 75.9 ± 2.2 km sjats:sup−1</jats:sup> Mpcjats:sup−1</jats:sup> from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus jats:italicH</jats:italic> jats:sub0</jats:sub> = 71.2 ± 3.8 km sjats:sup−1</jats:sup> Mpcjats:sup−1</jats:sup> using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + jats:italicw</jats:italic> = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + jats:italicw</jats:italic> = −0.06 ± 0.07; these shifts of up to ∼0.11 in jats:italicw</jats:italic> could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-jats:italicz</jats:italic> samples, new light-curve models, calibration improvements, and eventually by building high-jats:italicz</jats:italic> samples from the Roman Space Telescope.</jats:p>



5109 Space Sciences, 51 Physical Sciences, 7 Affordable and Clean Energy

Journal Title

Astrophysical Journal

Conference Name

Journal ISSN


Volume Title


American Astronomical Society
STFC (2118607)
European Commission Horizon 2020 (H2020) ERC (101002652)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (873089)