Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.


Type
Article
Change log
Authors
D'Erchia, Anna Maria 
Atlante, Anna 
Gadaleta, Gemma 
Pavesi, Giulio 
Chiara, Matteo 
Abstract

Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments.

Description
Keywords
Bioinformatics tools, Mitochondrial DNA, Mitochondrial activity, Mitochondrial gene expression, Nucleo-mitochondrial cross-talk, Whole-exome sequencing, Cell Respiration, DNA, Mitochondrial, Exome, Gene Dosage, Humans, Male, Middle Aged, Mitochondria, Transcription, Genetic
Journal Title
Mitochondrion
Conference Name
Journal ISSN
1567-7249
1872-8278
Volume Title
20
Publisher
Elsevier
Sponsorship
This work was supported by Ministero dell'Istruzione, Università e Ricerca (projects PRIN-2009, Micromap [PON01_02589], Virtualab [PON01_01297]) and by Consiglio Nazionale delle Ricerche (progetto strategico “Medicina personalizzata”, progetto strategico “Invecchiamento”, progetto bandiera “Epigen”).