Evidence for spin selectivity of triplet pairs in superconducting spin valves.

Change log
Banerjee, N 
Smiet, CB 
Smits, RGJ 
Ozaeta, A 
Bergeret, FS 

Spin selectivity in a ferromagnet results from a difference in the density of up- and down-spin electrons at the Fermi energy as a consequence of which the scattering rates depend on the spin orientation of the electrons. This property is utilized in spintronics to control the flow of electrons by ferromagnets in a ferromagnet (F1)/normal metal (N)/ferromagnet (F2) spin valve, where F1 acts as the polarizer and F2 the analyser. The feasibility of superconducting spintronics depends on the spin sensitivity of ferromagnets to the spin of the equal spin-triplet Cooper pairs, which arise in superconductor (S)-ferromagnet (F) heterostructures with magnetic inhomogeneity at the S-F interface. Here we report a critical temperature dependence on magnetic configuration in current-in-plane F-S-F spin valves with a holmium spin mixer at the S-F interface providing evidence of a spin selectivity of the ferromagnets to the spin of the triplet Cooper pairs.

0912 Materials Engineering
Journal Title
Nat Commun
Conference Name
Journal ISSN
Volume Title
Springer Science and Business Media LLC
Engineering and Physical Sciences Research Council (EP/I038047/1)
This work was funded by the Royal Society through a University Research Fellowship “Superconducting Spintronics” held by J.W.A.R. M.G.B acknowledges funding from the UK EPSRC and the European Commission through an ERC Advanced Investigator Grant "Superspin". C.B.S. and R.G.J.S were supported by the Erasmus exchange programme and the Leiden Outbound Grant. C.B.S. acknowledges Prof. Jan Aarts’ for scientific input. The work of F.S.B and A. O. have been supported by the Spanish Ministry of Economy and Competitiveness under Project FIS2011-28851-C02-02. The work of A. O. have also been supported by the CSIC and the European Social Fund under JAE-Predoc program and the EU-FP 7 MICROKELVIN project (Grant No. 228464).