Repository logo
 

Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes.

Published version
Peer-reviewed

Repository DOI


Change log

Authors

Kolesnikova, Uliana K 
Van de Velde, Jozefien D 
Burns, Robin 
Tikhomirov, Nikita P 

Abstract

A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.

Description

Keywords

Arabidopsis kamchatica, Arabidopsis lyrata, S-locus, allopolyploidy, self-compatibility, Diploidy, Arabidopsis, Alleles, Ploidies, Biological Evolution

Journal Title

Mol Biol Evol

Conference Name

Journal ISSN

0737-4038
1537-1719

Volume Title

40

Publisher

Oxford University Press (OUP)