Halide Remixing under Device Operation Imparts Stability on Mixed-Cation Mixed-Halide Perovskite Solar Cells.
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Mixed-halide mixed-cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap-tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable-pitch synchrotron grazing-incidence wide-angle X-ray scattering technique is used to track the surface and bulk structural changes in mixed-halide mixed-cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality- and depth-dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out-of-plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de- and re-mixing competitions and their impact on device longevity. These operando techniques allow real-time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.
Description
Funder: Taiwan Cambridge Scolarship
Funder: Winton Studentship
Funder: Lloyd's Register Foundation; Id: http://dx.doi.org/10.13039/100008885
Funder: Royal Academy of Engineering; Id: http://dx.doi.org/10.13039/501100000287
Keywords
Journal Title
Conference Name
Journal ISSN
1521-4095
Volume Title
Publisher
Publisher DOI
Sponsorship
European Research Council (756962)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (841386)
EPSRC (1948703)
Leverhulme Trust (RPG-2021-191)
EPSRC (via University of Surrey) (RB3671)
Engineering and Physical Sciences Research Council (EP/R023980/1)
EPSRC (EP/T02030X/1)
Engineering and Physical Sciences Research Council (EP/S030638/1)
Engineering and Physical Sciences Research Council (EP/V027131/1)