Repository logo
 

Phosphine gas in the cloud decks of Venus

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

Measurements of trace-gases in planetary atmospheres help us explore chemical conditions different to those on Earth. Our nearest neighbor, Venus, has cloud decks that are temperate but hyper-acidic. We report the apparent presence of phosphine (PH3) gas in Venusian atmosphere, where any phosphorus should be in oxidized forms. Single-line millimeter-waveband spectral detections (quality up to ~15 sigma) from the JCMT and ALMA telescopes have no other plausible identification. Atmospheric PH3 at ~20 parts-per-billion abundance is inferred. The presence of phosphine is unexplained after exhaustive study of steady-state chemistry and photochemical pathways, with no currently-known abiotic production routes in Venusian atmosphere, clouds, surface and subsurface, or from lightning, volcanic or meteoritic delivery. Phosphine could originate from unknown photochemistry or geochemistry, or, by analogy with biological production of phosphine on Earth, from the presence of life. Other PH3 spectral features should be sought, while in-situ cloud and surface sampling could examine sources of this gas.

Description

Keywords

5109 Space Sciences, 5107 Particle and High Energy Physics, 5101 Astronomical Sciences, 51 Physical Sciences

Journal Title

Nature Astronomy

Conference Name

Journal ISSN

2397-3366
2397-3366

Volume Title

5

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
Simons Foundation (599634)
STFC (grant ST/N000838/1, D.L.C.); Radionet/MARCUs through ESO (J.S.G.); the Japan Society for the Promotion of Science KAKENHI (grant no. 16H02231, H.S.); the Heising-Simons Foundation, the Change Happens Foundation, the Simons Foundation (495062, S.R.); the Simons Foundation (SCOL award 59963, P.B.R.). RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 730562. J.S.G. is a Visitor at the Institute of Astronomy, University of Cambridge.