Nutritional and genetic variation in a core set of Ethiopian Tef (Eragrostis tef) varieties.
Published version
Peer-reviewed
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
BACKGROUND: Tef (Eragrostis tef) is a tropical cereal domesticated and grown in the Ethiopian highlands, where it has been a staple food of Ethiopians for many centuries. Food insecurity and nutrient deficiencies are major problems in the country, so breeding for enhanced nutritional traits, such as Zn content, could help to alleviate problems with malnutrition. RESULTS: To understand the breeding potential of nutritional traits in tef a core set of 24 varieties were sequenced and their mineral content, levels of phytate and protein, as well as a number of nutritionally valuable phenolic compounds measured in grain. Significant variation in all these traits was found between varieties. Genome wide sequencing of the 24 tef varieties revealed 3,193,582 unique SNPs and 897,272 unique INDELs relative to the tef reference var. Dabbi. Sequence analysis of two key transporter families involved in the uptake and transport of Zn by the plant led to the identification of 32 Zinc Iron Permease (ZIP) transporters and 14 Heavy Metal Associated (HMA) transporters in tef. Further analysis identified numerous variants, of which 14.6% of EtZIP and 12.4% of EtHMA variants were non-synonymous changes. Analysis of a key enzyme in flavanol synthesis, flavonoid 3'-hydroxylase (F3'H), identified a T-G variant in the tef homologue Et_s3159-0.29-1.mrna1 that was associated with the differences observed in kaempferol glycoside and quercetin glycoside levels. CONCLUSION: Wide genetic and phenotypic variation was found in 24 Ethiopian tef varieties which would allow for breeding gains in many nutritional traits of importance to human health.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1471-2229