Repository logo
 

The impact of cyclic fuels on the formation and structure of soot

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Abstract

This paper investigates the impact of cyclic fuels on the nanostructure, nucleation and overall production of soot in an n-heptane (C7H16) laminar coflow diffusion flame. The fuels selected to dope the n-heptane flames are cyclopentene (C5H8), cyclohexene (C6H10) and methylcyclohexane (C7H14). These fuels were chosen for their differences in their structure and sooting tendency. The flame structure was studied with Differential Mobility Spectrometry (DMS) for particle size distribution determination, two-colour ratio pyrometry to calculate the soot volume fraction and soot temperature. The soot nanostructure was investigated using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). The addition of cyclic fuels was found to promote the formation of soot nanoparticles earlier in flames. In addition, the soot volume fraction was increased significantly by the addition of the cyclic fuels, especially by the addition of cyclopentene. The addition of 20% of cyclopentene increased the soot volume fraction by a factor of 2. HRTEM results suggest a significant influence of cyclopentene on the soot nanostructure; cyclopentene addition promotes the incorporation of five-membered rings (pentagonal rings) leading to highly curved fringes. This suggests cyclopentene could be used as a fuel to promote curvature in different carbonaceous structures to modify their properties.

Description

Keywords

Soot formation, coflow diffusion flames, 5-membered rings, pentagonal rings, particle size distribution, polycyclic aromatic hydrocarbons

Journal Title

Combustion and Flame

Conference Name

Journal ISSN

0010-2180
1556-2921

Volume Title

219

Publisher

Elsevier BV
Sponsorship
National Research Foundation Singapore (via Cambridge Centre for Advanced Research and Education in Singapore (CARES)) (unknown)
European Commission Horizon 2020 (H2020) Societal Challenges (724145)