Repository logo
 

Smoothing a rugged protein folding landscape by sequence-based redesign

Published version
Peer-reviewed

Type

Article

Change log

Authors

Porebski, BT 
Keleher, S 
Hollins, JJ 
Nickson, AA 
Marijanovic, EM 

Abstract

The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.

Description

Keywords

3101 Biochemistry and Cell Biology, 31 Biological Sciences, 1.1 Normal biological development and functioning

Journal Title

Scientific Reports

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

6

Publisher

Nature Publishing Group
Sponsorship
Wellcome Trust (095195/Z/10/Z)
BTP is a Medical Research Council Career Development Fellow. AAN and JJH are supported by the Wellcome Trust (grant number WT 095195). SM acknowledges fellowship support from the Australian Research Council (FT100100960). NAB is an Australian Research Council Future Fellow (110100223). GIW is an Australian Research Council Discovery Outstanding Researcher Award Fellow (DP140100087). AMB is a National Health and Medical Research Senior Research Fellow (1022688). JCW is an NHMRC Senior Principal Research fellow and also acknowledges the support of an ARC Federation Fellowship. We thank the Australian Synchrotron for beam-time and technical assistance. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) (www.massive.org.au). We acknowledge the Monash Protein Production Unit and Monash Macromolecular Crystallization Facility