Repository logo
 

Circuits for integrating learned and innate valences in the insect brain.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Afonso, Bruno 
Andrade, Ingrid V 

Abstract

Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.

Description

Funder: Howard Hughes Medical Institute

Keywords

D. melanogaster, action selection, connectome, learnt behavior, neuroscience, valence, Animals, Brain, Connectome, Drosophila melanogaster, Larva, Learning, Mushroom Bodies, Neurons

Journal Title

Elife

Conference Name

Journal ISSN

2050-084X
2050-084X

Volume Title

10

Publisher

eLife Sciences Publications, Ltd
Sponsorship
Wellcome Trust (205050/Z/16/Z)
Wellcome Trust (205038/Z/16/Z)
European Research Council (819650)