Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode.

Change log
Sun, Zongjie 
Chen, Jing 
Li, Meng-Yang 

Ionic-conductive polymers are appealing electrolyte materials for solid-state lithium-based batteries. However, these polymers are detrimentally affected by the electrochemically-inactive anion migration that limits the ionic conductivity and accelerates cell failure. To circumvent this issue, we propose the use of polyvinyl ferrocene (PVF) as positive electrode active material. The PVF acts as an anion-acceptor during redox processes, thus simultaneously setting anions and lithium ions as effective charge carriers. We report the testing of various Li||PVF lab-scale cells using polyethylene oxide (PEO) matrix and Li-containing salts with different anions. Interestingly, the cells using the PEO-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) solid electrolyte deliver an initial capacity of 108 mAh g-1 at 100 μA cm-2 and 60 °C, and a discharge capacity retention of 70% (i.e., 70 mAh g-1) after 2800 cycles at 300 μA cm-2 and 60 °C. The Li|PEO-LiTFSI|PVF cells tested at 50 μA cm-2 and 30 °C can also deliver an initial discharge capacity of around 98 mAh g-1 with an electrolyte ionic conductivity in the order of 10-5 S cm-1.


Funder: Young Talent Support Plan of Xi’an Jiaotong University. Natural Science Basic Research Program of Shaanxi (No. 2020-JC-09) Fundamental Research Funds for the Central Universities (xjh012020042)

Article, /639/4077/4079/891, /639/301/299, /639/301, /639/638/161, /639/638/675, /120, /128, /147/135, /119/118, article
Journal Title
Nat Commun
Conference Name
Journal ISSN
Volume Title
Springer Science and Business Media LLC
National Natural Science Foundation of China (National Science Foundation of China) (51973171)