Repository logo

Millennial changes in North American wildfire and soil activity over the last glacial cycle

Change log


Fischer, H 
Schüpbach, S 
Gfeller, G 
Bigler, M 
Röthlisberger, R 


Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent Dansgaard-­‐Oeschger (DO) events. However prior to the last deglaciation, little is known about the response of North American vegetation to such rapid climate changes and especially about the response of biomass burning, an important factor for regional changes in radiative forcing. Here we use continuous, high-­‐resolution ammonium (NH4+) records derived from the NGRIP and GRIP ice cores to document both North American NH4+ background emissions from soils and wildfire frequency over the last 110,000 yr. Soil emissions increased on orbital timescales with warmer climate, related to the northward expansion of vegetation due to reduced ice-­‐covered areas. During Marine Isotope Stage (MIS) 3 DO warm events, a higher fire recurrence rate is recorded, while NH4+ soil emissions rose only slowly during longer interstadial warm periods, in line with slow ice sheet shrinkage and delayed ecosystem changes. Our results indicate that sudden warming events had little impact on NH4+ soil emissions and NH4+ aerosol transport to Greenland during the glacial but triggered a significant increase in the frequency of fire occurrence.



37 Earth Sciences, 3709 Physical Geography and Environmental Geoscience, 3705 Geology, 13 Climate Action

Journal Title

Nature Geoscience

Conference Name

Journal ISSN


Volume Title



Springer Science and Business Media LLC
Royal Society (RP120096)
This paper has greatly benefitted from the Sir Nicholas Shackleton fellowship, Clare Hall, University of Cambridge, U.K., awarded to HF in 2014. The Division for Climate and Environmental Physics, Physics Institute, University of Bern acknowledges the long-­‐term financial support of ice core research by the Swiss National Science Foundation (SNSF) and the Oeschger Centre for Climate Change Research. EW is supported by a Royal Society professorship. NGRIP is directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It is supported by funding agencies in Denmark (SNF), Belgium (FNRS-­‐CFB), France (IPEV and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNSF) and the USA (NSF, Office of Polar Programs).